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'An

_ J7 I ABSTRACT

j This report siimarizes results of 62 computations petformed. for I
and included in the proceedings of the 1981 Stanford Conference
on Complex Turbulent Flows (commonly referred to as the -1981

_ Stanford Olymics)., The work was done under joint snonsoth . o
of the Air Force Ofice of Scientific Research (Contract F-9620-78-

- C-0024) and the NASA Lewis Research Center (Contract NAc--2280)

-he objective of this study has been to use a single set of equattons
® modeling turbulent flow phenomena, with no adjustment of closure

coefficients from flow to flow, to predict a relatively wide range

of turbulent flows. In so doing we have been able to oboj: ,vely
assess the current state of development of a two-eauation nodelJ of turbulence and to establish its range of applicabili,.

- Aonlicatibns include: (a) homogeneous turbulent flows; (b) 4 com-I pressible external and internal flows; and (c) comprs... _ copr ssb=- external--
flows. One of the incompressible cases is flow past a backward

f facing step and includes boundary-layer separation; all cther cases

have no separation.

The model employed in our comnutations oredicts flow r ri in
.... .se ar. %I. %..

ulite close agreement with exneimental data for the constant-

Pressure boundary layer, the incompressible mixing layer and for

flows with surface mass transfer. Addit onally, predicted eTffects
of Mach number and surface cooling on a constant-oressure boundary

--- layer are -close to measured effacts

'For flows with strong adverse pressue gradient, most notably the
=$! backward-facing step, the model's .redictions differ sus.tantIally

from corresponding measurements. A- an almost uniform t-rend, the

_ model initially responds to an adverse pressure gradiAnt ~r to
what has been measured but, uon removal of the gradient, returns

ti.o euilibrium more rapidly than measured.
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1. TrRODUCTION~

The objective of our parti-cloation in the 1081 Stanford Confer-ence _

on Complex Turbulent Flows has been to use a single theory to comn-
pute As wide a range of flows included in the Conference as possible.
in so doing it has been our hope that we can objectively assess

progress made to date In developing a universally applicable en-gi..eerihg model of- turbulence. To accomlis thsobetiew
have computed 20 flows wvith a total of 62 separate computations.

=Table 1 summarizes the fl-ows computed, including t*he Sponsor for=

each case.

Table 1. Summniary of Flo6ws Computed

- - Number -Describtibn Cases Sonso
0111/Smpe Incombr-asible B.L. In Adverse V ?S

0142/Entry ?ozzorini Lo-Core Turb. Diffue NASAI
313Enr ?lozzorinl 1. IQh-Core Turb. D-1ffusy er 1 NASA
0241/rntry Boundary Layer with Blo6w Ing 5c AF0SR
0242/Ent-r Boundary Layer with Suction 1 AFOSR.24i4/Ent-fY B ou n d a r T ayers wi Suction AFOSRI0311/E-ntry Mxn -0_Layr Development O FSR I

T! 71S irnp Homoeeeous isotroplc *Th'rbulen-ce AFOSR
1 7 2/S im Dl1e Homogeneous R o t atUing Tu'rbulence 3:" ASR

Q "74!/S-Imnle Homogeneous Plane Strain 2 AF 0S R
0'341/Ent-l Homogeneo~uS Shear A F 0SR,
041/nry Backward Facing Step 1 NASA
0612/Simple Constant- ?r-essure Boundary layer I ASR.31-01/Siqmple- Mach "o. Effect on Boundary L-aye 6 AS
V20/S imnl Wall ri m"r Effect on BL FS
84 03/Simple Compressible B.L* in Adverse V 9 NASA
81'1/SIMple Compressible B.L. in JAdcv er s eV 9 NASA

~-5l/imle Mah o. Effect on Mixing Layer 3 1 AFC0SW
86211/Entry RAE 2822 ransonic Airfoil 0 AF
8623/Entry __DSMI 52-s Trn ncArol6 AFOSR -d

All 62 computations used the two-ecuatlon model -of t-urbulence e
vised by Wilcox and Rubesin w ith some minor ine- t-unin 11 of' the

WA ~closure coefficients. Comiputational t~ools used t o solve thae_
ecurltl-ons of notion include:- (a) a fou-&rh-order accurate ~ne

Kutta-- integration scheme for the 8 homog-eneous turbulent flows

(Flows 0371, 0372, 0374 and 0376); (b) a f-ull1y ellip-ti c I n compr-e s s 10e



program named EDDYNSI for the- backward-f1acing step (Flow 01121);

an~d (a) a compressible/incompressible boundary-).ayer program

named -DDYBL for the other 53. computations.

In the following Sections, wepeet in detail the equations

of motion and boundary conditions employed. We zhen give a brie-

description of the numerical tools used followed byr a discussion

Of the various numerical checks m~ade during the course of t;-he

many computations. Finally, we summarize results obtained and

outline possible future avenues Of research.

LL-



2. EQUATIONS OF MOTION

This section first presents the basic equations of motion used in

this project. Then a nonlinear stress/strain-rate constitutive

relation used for the homogeneous turbulent flows is given. Finally,

we specify special modifications to the basic model needed for

flows with significant system rotation and/or streamline CurvatUre.

2.1 CONSERVATION EQUATIONS

The equations of .motion used in all of our computations are those

devised by Wilcox and Rubesin. The model is of the two-ecuation -

variety in which the Reynolds stress tensor T is assumed pro-

portional to the mean strain rate tensor S.. according to

a13

I- 40 (S"- - 6i4 - e SiJ (4

where s is the eddy diffusivity, e is the turbulent mixing ener.gy

is mass densIty, u 1 is the mean velocity vector, x, s os-tion

vector and .ij is the Kronecker delta. The mean equations of moticn

thus are ,r itten (for steady flow) as follows.

AI
; "* -W x ( P u .' -0 ( 2 "N

5E Cpu.) = o (2)j ! u  S. --:

=.pu-.) - +4 (2 - J.+ Ta) (3) -
x 31 aX. ox 4  33 x,_ ; .o

-X T
aD a_1 1

In equations <~( -) p is mean pressure, h is mean enthai-y, w is
ar r and P. are laminar and turbulent Prandtl--- oequla iosity, u

numbers, w is turbulent dissipation rate and 3* is a closure co-

efficient which will be defined momentarily. Before introducin

A=



the two turbulence model ecuations it is instructive to note that
the mean energy equation (4) apers to find the conventional work
term r,3U1 /3x. replaced by *pwe. This is not an ad hoc closure
approximation, but rather a closure approxi-aion onsi n i

cse . -ionf consast-ent with
those- mad blwi h uMUl uL.- 'VUSthose made below in the turbulent energy equation. The correctness

of Eauation (4) becomes obvious when the resultant ecuation for
total energy, viz, (h+ u u.+e), is formed.

To comolete our set of ecuations, we compute the eddy diefusivity

in terms of e and w from:

rn

_ * -where y* is a closure coefficient _given below in Equations (8).

U --- oThe ecuations governing the evolution of e and w are:

' i (ou~e) = 7.. - 0'.o~e + r [3I.@,,'.j 6

) 2

oxi ~ ~ ~ 1 C x.M3w

-2-

gwhere 9. is turbulent length scale defined as e-1 /-. in E-cuations I )
-. (5-7) thee are several closure coefficients whose values are as 3

WU
~~given ifl Equations (8). != I - (1- 2')exp (-Re)

4.;, y,=5{l- (!-A2 ) exxp (-Re_../l.5) I }o...

: -- Note that ReT = pe/wu is the turbulent Reynolds num±ber,.:

" 2.2 :ONLINEAR CONSTITUTIVE£ Rz2:3N9,
The homogeneous turbulent flow e aculations used the nonl.near stress/

nstrain-rate constitutive relation devised by Wilcox and Rubesln I

y*Aj



UU
Swhich for the high Rem, incompressible cases considered becomeS:

_! ! o=2 Sj- -e6.i, + 98S* (w'-I2S $ n) (imrntj + jmPmi) I9
i2

: .. where S..2 = ( ! j-Buj/3x5 ) 1s the mean rotation tensor.

: 2.3 SYSTEM ROTAT'ION AND STREANLINE CURV/ATURE

: .For rotating hom'ogeneous turbulent flow (Case 0372) computations

include the Wilcox-Chambers rotation term. This term is added

to the equation for e, which becomes

3u.r~~ ~ t4 r.t9Autv> - *we (0
ti Rotation Term

where t is time and Q is rotation rate. Finally, the transonic
airfoil Cases 8621 and 8623 use the WJilcox-Chambers streaml1ne
curvature term which yields hefollowing modified euation for e:

-e <7puv > <-- U u > au+ I
Curvature Term

where R is surface radius of curvature ( si -or convex,
__ negative for concave).

-g- - _ _ =_ -- ~ --



3.BOUNDARY CONDITIONS

For all but the 8 homogeneous cases solid b0,ou nd aie arAleet,

and surface boundary conditions must be spe-.tf-'d. With t-he exceution

of the backward-facin- step, all comoutati-ons in~egrated all the
way t o the surface, y =0. The backward-facing step computation

employed "surface" boundary condal"ions based on t.he law of "he wall
Thi.-s sec-tion describes the surface boundary conditins used Jin"

each case.

3.1iNEGRALTION TO THE SURFACE

For int ea.rat on all the way through the sublayr to the surface,I
y Os0 boundary conditions are as follows:

u 0 oB /y ty= 32
w

e -0

wnere Tis temperaturme a-nd subsc-riot-'- w denotes surface. For tChe

diSsinatCion rate, the quantity S is a universa- ±l fuction of surfacea

runess and mass injecti'on rate defined by (W"ilcox-Tacl:j

SS (5 R

+ +

whr uis nondimennsionalrohnsheht ineo thate aor sutk (v..</

we take S=0and ~n the limit of ero r- uZY"ness and ineto -h

"=ear- rface beh-avi*or of w is:

&0 as J,
Y-



where v is kinematic viscosity.

3.2 MATCHING TO THE LAW OF THE WALL

For the backward-facing step we used b,-oundary conditio consistent J

with the law of the wall, viz,

u - - log ) + 5.0

e uT  as y .0 (15)

(ii U 1 !(0* I

wnere ic = .. Is Karman's constant. Whcl mo .e-accuate udary

conditions (also lcuown as wall functions) are available o 0 "1

equations (see the Appendix), limited tle and fu ndsr ce

-I- ter use for the Conference.

mp S

®' U
1-i U
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4I. COMPUTLATIONAL TOOLS _

4.1 HOMOGENEOUS TURBULENT FLOWS

Because of their inherent simplicity, we solved the equations of

motion for the 8 homogeneous turbulent flows with a straightforward

fourth-order accurate Runge-Kutta integration scheme and, for

obvious reasons, the program requires no further description.

4.2 ATTACHED AND FREE SHEAR FLOWS

The lion's share of our computations used the same program, namely

our two-dimensional/axisymmetric compressible/incompressible
E 4boundary-layer/shear-layer program known as EDDYBL In performing

the calculations all compressible cases were done on a UNIVAC 1108

_ and all incompressible cases on a --- 80 Microcomputer. The latter

cases were actually done with a ,z--on of EDDYBL in which all of

the combressibility terms were eliminated. The program is a

parabolic marching code which is second-order accurate in both

streamwise and normal directions.

4.3 BACKWARD FACING STEP

The backward-facing step case was done with an incompressible,

elliptic program known as EDDYNSI. The program is a modified ver-

sion of the TEACH-2E Code which also is second-order accurate in -

streamwise and normal directions.

4.4 NUMERICAL SENSITIVITY STUDY

We performed many numerical accuracy tests on a more or less ran-

dom sampling of the many cases we computed. In general we tested the

effect of total mesh point number, location of mesh point nearest

the surfa e and size of streamwise steps taken. For all of the

boundary-layer cases we found 80-100 mesh points normal to theI surface with the value of y+ for the point neo-est the surface less

than unity to be quite satisfactory. Except for very strong adverse

pressure gradient cases there is virtually no loss in accuracy in

8_t -



taking streamwise steps up to about one boundary-layer thickness.

In some of our compressible boundary layer runs we used as many

as 280 points normal to the surface with y nearest the surface

as small as .09. The difference in computed integral properties

over a 100 point calculation was never found to be more than 2%.

For the backward-facing step case we used meshes which had a

total of 196, 529, and 870 mesh points. The total number of mesh

points had Very little effect on predicted reattachment length

although local flow properties varied substantially with the

number of points used. _

KU
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5. RESULTS

This section presents a case-by-case description of results
obtained including all plots submitted to t-e 1981 Stanford

Olympics Conference.

5.1 HOMOGENEOUS TURBULENT FLOWS

These flows have no so- I b..ndar-es and diffusion across stream-

lines is negligible. s the equations of motion simplify to

first-order ordinary dif.e cutial equations (convective terms

are replaced by time rate of change terms, c.f. Equation 10).

The equations of motion are trivially integrable using a standard

Runge-Kutta algorithm.

Our purpose in doing these flows was to clearly delineate one of

the bounds on the applicability range of a two-equation model of

turbulence. The assumption of an algebraic relation between the

Reynolds stress tensor and the mean strain rate tensor impliesI that the flow has achieved an "equilibrium" state. Even using

a nonlinear stress/strain-rate constitutive relation (Ecuation9)

accounts only for nonequipartition of energy; departures from

equilibrium still are ignored. Results for the four homogeneous

turbulent flow cases follow.

5.1.1 Homogeneous Isotropic Turbulence

Figure 1 compares computed and measured turbulent kinetic energy,
q2 for decaying isotropic turbulence. As shown Computed and measured

energies differ by less than 1% of scale. This close agreement

is unsurprising as the ratio of $ to a* has been selected to match

measured decay rates for homogeneous isotropic turbulence.

5.1.2 Homogeneous Rotating Turbulence

Figures 2-5 compare computed and measured "low properties for

three different rotation rates, viz, n=0, 20, 80 sec As shown

10
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in Figure 2 (the nonrotating case), we agai predict the decay of

homogeneous isotropic turbulence quite accurately. Even with Q=
20 sec- predicted and measured decay of q2 are quite close. How-

ever, at the highest rotation speed we actually predict an eventual

increase in q in contrast to the monotonic decrease measured.
- Figure 5 compares computed and measured ratios of /VTC to /7.

- Clearly the measured partition of energy differs substantially

from that predicted.

5.1.3 Homogeneous Plane Strain

- Two strain rates were considered, viz, -av/y = aw,"az = 9.44 sec

(Townsend) and 4.45 sec (Tucker-Reynolds). Figures 6-8 compare

computed and measured normal Reynolds stresses for the higher __

strain rate while Figures 9-11 correspond to the lower strain rate. M

- As shown, for both cases, w'2 is reasonably close while predicted T

u ?2 and v'2 are about 50% lower than measured.

- -° 5.i.4 Homogeneous Shear

Two shear rates were considered, viz, au/ny = 12.9 sec (Champagne,

et al) and 48 see 1 (Harris, et al). Figures 12-15 compare computed

and measured Reynolds stress components for the lower shear rate I
while Figures 16-19 correspond to the higher shear rate. For both

cases predicted normal and shear stress components are much lower

than measured.

5.2 CONSTANT PRESSURE BOUNDARY LAYER

Our next round of applications of the turbulence model is to flow
over a flat plate at both incompressible and compressible flow

conditions. In all computations, computation was initiated at the

- leading edge of the plate from laminar profiles. Thne equations

of motion are integrated through transition up to Re0 = 10000 -

_ ifor all of the compressible cases.

= - =-



5.2.1 Incompressible Case I

Figures 20-22 compare computed and measured velocity profile, skin-__

friction and shape factor for an incompressible flat-plate

boundary layer (FPBL). The velocity profile corresponds to a plate- t

length Reynolds number of 10.9 million. As shown, differences be-

tween computed and measured flow properties are well within engineer- 
:i "° ing accuracy. }

5.2.2 Effect of Mach Number

Figure 23 compares computed effect of freestream Mach number on

an adiabatic-wall FPBL. As shown for Mach number ranging from 0

to 5 and at A momentum-thickness Reynolds number, Re,, Of" 10000,

the model equations predict skin friction approximately 3-50

lower than measured. Figure 24 shows the predicted recovery factor -

as a function of Mach number. The predicted variation is well

within experimental data scatter.

5.2.3 Effect of Surface Cooling.

SFigure 25 compares computed and measured effects of surface cooling

on a Mach 5 FPBL. The adiabatic wall temperature determined from

the Mach 5 computation of Subsection 5.2.2 was used for all surface

cooling cases. Again computed skin friction is About 3-5% lower

than measured.

5.3 THE MIXING LAYER

Perhaps the most basic of all free shear flows is the mixing layer. I
The mixing layer is the next of our applications. in this subsection

we first describe our results for the incompressible case, including

effects of velocity ratio. Then we discuss the compressible case.

5.3.1 Incompressible Casei
Li Application of the 1 model to this flow found the

I predicted spreading rate to be .085 as compared to the measured

12



7- (consensus) value of .115. Further investigation showed that the

spreading rate is strongly affected by the closure coefficients

Y and a* (see Equations 6-7). Figure 26 shows the predicted

effect of a on spreading rate (the curve was constructed with a=a*). _

As shown, selecting a = a* = 2/3 yields a spreading rate of .115.

This is the "fine tuning" of the Wilcox-Rubesin model alluded to

in the Introduction.

Figure 27 compares computed and measured spreading rate as a function

of velocity ratio u,/ui where u2 and Ul are the velocities of the

mixing streams. As shown, predicted spreading rate vi-rtualy

duplicates the accepted correlation of measured values. Figure 28

compares the computed velocity profile with the measurements of

Liepmann and Laufer.

Finally, Figure 29 compares computed and measured development of A

mixing layer from separation to a distance 1800 momentum thickness

downstream. The predicted asymptotic spreading rate is, as expected,

.115. As shown, the initial spreading rate is somewhat higher thou

measured and falls a bit below measured values farther downstream.

5.3.2 Effect of Mach Number

To assess effects of compressibility, we next compute the adiabatic
mixing layer, viz, the mixing of a supersonic stream with a s--ream of

the same fluid at rest having identical total temperatures. In order

to differentiate effects of Mach number and density variation we first

predicted the Mach zero spreading rate for density ratios of 1/7 and

7. When the denser fluid is at rest the spreading rate is reduced

to .111; when the heavier fluid is at rest the spreading rate in-
creases slightly to .116i Then, varying Mach number from 0 to 19,

we find virtually no effect whatever on spreading rate (Figure 30). M

To be certain no numerical errors are involved we reran all comp-

ressible cases with a one-dimensional implicit time marching program

to solve the farfleld (self-similar) equations and found Drecisely

the same result...no variation of spreading rate with Mach number.

13
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Using the farfield equations we also included (a) transverse pre-
6sure gradient, Saffman-Wilcox compressibility term and

(c) the Wilcox-Chambers streamline curvature term. None of these

modifications had any substantial (greater than 10%) effect on

oredicted spreading rate.

5.4 FLOWS WITH SURFACE MASS TRANSFER

We now turn to more advanced avlications, the "rst of which are

flows with surface mass transfer. Only incompressible cases were

done, one with surface mass injection and the other six computations

with suction. Results follow. -

5.441 Effect of 'Blowing

We first consider a constant pressure boundary layer with uniform

mass injection, F = V/Ue = .00375, where Ue is velocity at the
boundary layer edge. Figures 31-34 show, respectively, skin

friction, momentum thickness, displacement thickness, and four

velocity profiles. As shown, computed and measured flow o-ope4ties

are cuite close. The largest differences are in momentum and

displacement thickness where computed differences are less than 10%.

5.4.2 Effect of Suc-Jon

Now we turn to suction where we performed a total of six computa-

tions. The first case had a mild adverse pressure gradient and a

suction rate F = -.004. Figures 35-38 compare computed and measured

skin friction, momentum thickness and velocity profiles. Computed

skin friction is approximately 5% higher than measured while

computed and measured velocity profiles differ by less than 7%. Al-
thoUgh larger differences are present for momentum and displacement

Sthickness, computed and measured shape factors are very close.

i *! The other five cases are all at the same freestream flow conditions

and have zero pressure gradient. Suction rate for the five cases

I ran~--ges from F = 0 to -. 0O144. Figure 39 oprscmue n
measured velocity profiles for the unsucked case and for the highest
suction rate. As shown, differences are slight. Figures 40"2

14



display predicted and measured Reynolds stresses (as with the

homogeneous turbulent flow cases we used Equation 9 to compute the

normal stresses). At the three highest suction rates the shear

and streamwise-normal components are within 5% of their measured

counterparts. The lateral-normal component shows larger dis-

crepancies.

5.5 BOUNDARY LAYERS WITH ADVERSE PRESSURE GRADIT

Our attention now turns to effects of adverse nressure gradient,

the. long standing nemesis of turbulence modelers. Applications

included in this subsection are one incompressible computation

and ten supersonic computations.

5.5.1 incompressible Case

Our incompressible application is the carefully documented flow

of Samuel and Joubert. Figure 43 exhibits skin friction, Figures
4445 show shear stress rofiles and Figure 46 displays velocity

profiles. As a general observation, the compiuted boundary layer

thickens more rapidly than measured and, rather than approaching

separation, tends to recover more rapidly than measured as the

pressure gradient is removed.

5.5.2 Compressible Cases

Our selection of compressible cases was more extensive including

a round of nine computations at Mach 2.2 with three different

Reynolds numbers (Acharaya, et ai). The tent computation was

at Mach 4 (Zwarts).

Figures 47-49 compare computed and measured skin friction for the

nine "lach 2.2 cases. As shown, for all Reynolds numbers, the

computed skin friction begins to drop at about the same location
as meaSUred, falls to drop as low as measured, and recoVers mucn

-more ranid.y than measured as the adverse radlnt Is removec
I -me

15z



IM
Figures 50-51 show shape factor for two of the cases. As illustrated =

the measurements indicate rapid variations in shape factor while

the predicted shape factors vary much more gradually. Figures

52-57 display computed and measured velocity, turbulent energy and

shear stress profiles. As in the incompressible case, the numerical

boundary layers are thicker than measured. -

Figures 58-61 compare our numerical results with.. measurements for

Zwarts' Mach 4 boundary layer. While computed and measured shape

factor distributions are quite close, all other flow properties

show the same general trend as the other adverse pressure gradient

cases. That is, the boundary layer tends to recover from the

adverse pressure gradient much more rapidly than measured.

5.6 OVER TRANSONIC AIRFOILS

Continuing in our more advanced applications we turn now to transonic __

flow past two airfoils, the RAE 2822 design and the DSMA 523s.

For the former, computations have been made for five different sets _

of flow conditions and three different sets of conditions for the
latter. All comutations have been done with our boundary-layer _-

program EDDYBL using measured pressure distributions. To account

for possible significant effects of streamline curvature, the _

Wilcox-Chambers curvature term (Equation 11) is included for both

surfaces of the airfoil. __

5.6.1 Airfoil RAE 2822

For this round of airfoil computations, freestream Mach number

ranges from .676 to .730 while Reynolds number based on chord

length ranges from 2.7 to 6.5 million. All computations are

started at the stagnation point and the transition oint adjusted
to match the measured location by varying freestream. turbulence

intensity. Figures 62-64 compare computed and measured momentum __

thickness, shape factor and skin friction for the upper surfaces;

I i
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computed properties on the lower surface (dashed lines) are also

7 displayed. As most clearly exhibited in the skin friction -_

distributions, we again find that computed skin friction fails

to drop as low as measured and the boundary layers all end up

much farther from separation than measured. The latter point

again suggests that the predicted boundary layer approaches anI

equilibrium state much more rapidly than measured as the adverse

gradient eases.

5.6.2 Airfoil DSMA 523s

Mach number and Reynolds number range from a6 to .8 and from 2 tO 4

million, respectively, for this round of airfoil computations.

Figures 65-67 compare predicted and measured skin friction dis-

tributions for both airfoil surfaces. On the one hand, theory

and experiment are reasonably Close on the upper surface for all

three cases. On the other hand, the measured boundary layer nearly

separates on the lower surface for each case while the numerical

boundary layer actually shows an increase in skin friction. Thus,

we again observe a more rapid than measured return to equilibrium

in an adverse pressure gradient. Figures 68-73 display computed

and measured velocity profiles. Except very close to the trailing

edge, predicted upper surface profiles differ from those measured

by less than 5%. Lower surface profiles show larger differences,

particularly in the nearly separated zone.

5.7 DIFFUSER FLOWS

Thus far all of our applications have been to external flows (with

the exception of the Samuel-Joubert case which was treated

however as an external flow). As part of our overall objective

to cover as wide a range of turbulence phenomena, we now focus

on two internal flow geometries, viz, flow through a six degree

conical diffuser. The first case has low-core turbulence while,

the second is for high-core turbulence.

17

- -- - _ -= -- _= -s- _



5.7.1 Low-Core Turbulence U

Figures 74-76 show computed and measured skin friction, velocity

profiles and shear stress profiles, respectively. As illustrated

in Figure 74, computed skin friction initially falls off at about,

the same rate as measured but then, in contrast to the measured

trend, begins to increase slowly rather than continuing towardseparation. The velocity and shear stress profiles (Figures 75-76)

show clearly that the numerical boundary layer ceases to grow as

rapidly as measured beyond the point where the computed skin friction =

begins to rise. Again, numerical results suggest the numerical

boundary layer heads toward an equilibrium state differing from the
measured state. In this case it is unclear whether we are a--

proaching a different equilibrium state or approaching equilibrium--
more rapidly than measured.

5.7.2 HIgh-Core Turbulence

Computed results for this case are compared with corresponding meas-
urements in Figures 77-79. Although comuted and measured skin

friction differences are smaller in this case than in the low-core
turbulence case, computed skin friction variation again stands in

contrast to the measured distribution ifn a similar manner. That

is, rather than decreasing monotonically, the numerical c begins

to increase slowly as we approach the outlet. AS with the low-

core turbulence case, velocity and shear stress profiles indicate
the numerical boundary layer is much thinner than measured. Again
we are either numerically approaching a different equilibrium
State than measured or approaching eouilibrium much more rapidly.

* 5.8 BACKWARD FACING STEP

Our fInal application, flow past a backwiard-facing step, differs
from all of our other anplications in a very important way. Speclfical-
ly, this flow includes boundary-layer Separation while the boundary

layers in all of our other applications remain attached. Computa-

tionally there is also a significant difference between this case

A8



and all of our other computations, viz, we have used "surface"

boundary conditions based on the law of the wall (Equation 15)

rather than integrating through the viscous sublayer (Equations

12-14). The use of so-called "wall functions" was necessitated
- by limited time and funds for this proJect; there is no fundamental

reason, however, why Equations (!2-14) can't be used.

Figures 80-83 comDare computed, and measured fZ_-low o.roertiesan-

cuding surface pressure distributions, maximum shear stress

variation, velocity profiles and shear stress oroflies. ?redicted
reattachment length is 3.7 step heights compared to a measured

reattachment length of 7.0 ste, heights. As shown in igu re 8, -

computed maximum shear stress Is considerably higher than measured I
through the separated region. As the flow proceeds downstream I

I reattacent the nume5iEiz boundfy layer returns to ecuillibrium

a! about the same rate as measured, although substantial differences

persist to the final station tO which computation continues. I n

thIs flow the computed boundary layer responds more rapidly to the

strong adverse pressure (much stronger than measured) and then

.returns (from a quIte different disturbed state) to equilibrium 4
at about the same rate as measured.

-I
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. SUMMRv AN D CONTCLUSIONS

The model emoloyed In our conutations predicts flow ronerties In

oulte close agreement with experimental data for the constant-oressure

boundary-layer, the incompressible mixing layer and for flows with

- surface mass transfer. AdditIonally, predicted effects 
number and surface cooling on a constant-pressure ooundary layer
are close to measured effeVIs.

For flows with strong adverse pressure gradient, most notably the

backward-facing sten. the model's predictions differ substantilly

from corresponding measurements. As an almost unIform r n tre d, the

model responds to an adverse pressure gradient in a manner simlar

to that which has been experimentally observed initially, but,
upon removal of the gradient, returns to equillbrium more rapidly

than measured (e.g., Flows 0142, 0=143, 622, 86 .

Our success with the flows with suction and blowing is in cart due
to the careful research which has one into developing n ororiat-

surface boundary conditions for such flows. 77nis success is perhaps

Wan: argument in favor of integrating to the surface (as opposed to

using wall functions) for this type of flow.

Ou relat6ve lack of success in computlng flows with strong adverse
pressure gradient is less easy to explain. Perhaps we should expect
to do poorly when the flow departs even slightly from equilibrlum
unon observIng the gross discrepancies between comuted and measured

Reynolds stress development for the homogeneous Cases. Yet, this

-would be too easy an explanation as the privMry culprit is the eddy-
viscosity aproximatlon In the homogeneous se. More plrusibly,

with a two-ecuation turbulence model, we may be attempting to des-

crbe toc much with too little in tZe *Ubrbuien bounday 1ayer.
That is, the near-wall port Ion of the boundary layer responds on

a rossly different scale from that of ihe defect layer. Yet, we
at mpt from a sIngle equation (the ecuation for ) to deduce the

scales on which the e t ire boundary layer will rescond and chance.

e. an ichne



This problem could actually be p-artiy accomodated by usi-=g wall

functions. A more satisfactory approach, however, mght be t
use more than a single dissi-ation rate. In this way we -uld

concentrate more of the physics of the boundary layer (e.g.,

response of large-scale structu-e ino the ecuations of
motion.

U
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FIGURES

All figures following are in the form submitted to the 1981

Stanford Olympics. All experimental data references can be

obtained from the p1-ceedings of the Conference. Unless other-

wise indicated, our computational results are indicated by

lines with heavy dots (- ). Experimental data generally

are indicated by open symbols.

A

22

__--- - =--



TU1980-81 AP0SR-HT-T*-STAINFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:--
COMPARISON- OF COMPUTATION AND EXPERIMENT

coC

0 LO

LOLK 16

Fi~~~ure~~ 1.Dcyo ooeeuAstoi ublne

0 0 023



THE 1980-81 AFOSR-RTTH-STANFORD CONFERENCE ON COMPLEX TURBULENT PLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

4

CrC)

244



THE 1980-8-1 APOSR-HTTI4-STANFORD CONFERENCE ON COMPLEX TrURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT__

CC)

CC

2 _z



THE 1980-81 APOSR-ETTM-STANFORD CON4FERENCE ON COMPLEX TURBULENT FLOWS: _ICOMPARISON OF COMPUTATION AND EXPERIMENT

~Lo

C2_

cr)

U:2 r

0 0) U-

Fiue LHomogeneous rotat.n tublnec==8 e~

26



THE 1980-81 APOSR-HTTH-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

00

00

0 0

C\0 0

co C\

Fiue Hmoeeu rtaigtublne;a 8 e

C27-



THE 19W0-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:COMPARISON OF COMPUTATION AND EXPERIMENT

IC)
I _

0i

co cz

0C

00

S 14
00

O0 0 co

0Iec 0 0

Figure 6. Homogeneous plane strain; strain rate =9.L44 see-.

28



I THE 1980-81 AFOSRK-E-TTm-STANPORD CONFERENCE ON COKPLEX TURAULEN FLOWS: _

CONKPARISON OF COMPUT&TON AND EXPERIM

CD 0

0I

IC-C
c;

00

C)

Trigure_ 7.Hm-e29ospan ian strain rai"* se



THE 1980-81 AFOSR.RTTN-STAFORD CONFERENCE ON COML ? WTURBULE FLOWS:
COMPARISON OF- COMPUTATION AND EXPERDTh

0U

-7. .1 10oo

00

--o +/ !

1-1

cr))

00

H0

o 16

' C *igure 84 Homogeneous pla.ne strain; strain 0 .e .44 see--

L- -
0~~~ 0 O-z7--oir



T THE 198-81 APOSR-HTTHM-STAIIFORD CONFERENCE ON COMLX TURBULENT FLOWS:-
COMPARISON OF COMPUTATION AND EXPERIMENT

C\2 4

v4c4
0

0m

0=1
0U
0U

0.
0. .1o M

C0 0

F~gre9.Homgeeos pan srai; trin at =10

I D

0,1 e

co1



THE 198"-1 AFOSR-H n-STANWORD CONFERENC ON COMPLE TURBULETLWS
COMPARISON OF COMIPUTATION AMD EXPERIMEN11iXPEIMEN

00

C\2

0;

0 0

C\2Q
00

0.

0I
C\2 i

tO o 0

C'? C'? 0
(\1 0 Q00

co ; EYD0

Figure 10. Homogeneous pDane strain; strain rate 4L.145 sec.

32



THE 1980o-1 AOSRTW-STAORD CONFEREC ON COMPLEX U FLS: i
cON oF C OUTATO AND EPERI ENT

E-1

i-I

o -, 'C

01

00

o 12

Coo

00

00

0 4E0 -s

0 
=

0 0 1+D 1

2000 46

.v:Figure 111. Homogeneous plane attain; st, r = .5 e -

0 l1



T E 1980-81 AFOSR-Hflh-STAFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUATION AND EXPERIMENT

00

Io 0o

0I

0

C1

-[ I

0 1
iPo

2-Aa

0 -

ixV
j S IIt t - i

ic' 00dd 0 0 0 0

P-4vae ! .. o-.ogeneo-us shea,; shear'- --ate i, sc -



COMPARISON OF COSPUTATION AND EXPERIE

_ , 0

0

C.0 $e -L-

cy-D 0

'5

o 4 0c

rate'

I ish a ; h ar n se

F-1I guH-ger-u

C35



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

Mai

co

o -

0D CDC a C

j ) 0 C) C 0 00

=Figure 114. Homogeneous shear; shearing rate =12.9 sec-

36



TE 1980-81 APOSR-HTTM-STANFORD CONFERENCE ON COMPLE, TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

ccV

2-c --- d

26

r=4=

-o C'-

0

00

C 0 c) 0

4d *1 -

Figure 15. Homogeneous shear; shearing rate - 12.9 sec

37



THI1808 APOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

I BE1808 COMPARISON OF COMPUTATION AND EXPERIMENT

I4 I

Fiur 16 ooeeusserUhain ae 4 e

j8



THE 1980-81 APOSR-ETTH-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

M l-~

CD

CID)
c0-4

J-~

C\2 6

0 -i

o0 M o t

Figure 17. Homogeneous shear; shearing rate = 8 see

39



THE 1980-81 APOSR-HTTH-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

[0

06

COD.

16
oL

C) M

404



2=1

THE 1980-81 APOSR-HTTH-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

3 10

CI

co 0

0 L1< 0 U

t44



[THE 1908 FS-TMSAFR OFRNEON COPLEX TUBLENT LOWS:

COPRIO OFCMUATO NEPRMN

0 ON

0L
rwI

* C\2\2

0) C) d 0 0

Figure 20. Incomnpressible nlat-plate boundary layer.

~42



TEE 1980-81 A1OSR-HTTM-STANpORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

00 U

.coo

C\2

C\2j

00
4,

00

cc 0

1*0 0C 0
C 0

U

Figure 21. Inconpessible tlat-plate boundary layer.

- _ --- -- - -
- _ _ _-=4 3

- -- ==--~zr~- - --- = - - - =~ =----~- -



THE 19"0-1 hPOSR-amT-STANFORD CONFERENCE ON COMPS X TURBULENT FLOWS:
COMPARI.SON OF COMPUTATION AND EXPERIMENT

C\2-

C

co,

CC\2

0I
00

0-
-0-

ENTo~ 
=~

Figre22 cmpessbl P-Dat bondrylaer

44U



1 * I THE 1980-81 AVOSR-ET1M-STANFORD CONFERENCE ON COM(PLEX TURBULENT FLOWS:
COMEPARISON OF COMPUTATION AND EXPERIMENT

Insulated flat plate

Free flight at 15,000 a
lo a 10,000I

Cf. 2.634 10i-3

.8 - local -ki-friction coefficient_
Van Driest II applied to Kirain-Sch~nberr Eq.

.6 MEASURfED

C1OMPUTED

.45



1.41oVR

a. 0.899

3 o.8841
4i 0.879

5 o.8714
1.2

>41.0

0.

0.

00 

i

00

ato ofMah.ume

boundary layer as a funt~lo Mc ubr

416



THE 1980-81 hPOSK-UTfl(-STNFORD CONFERENCE ON COMPME I.VRBULENT VLOVE:

COWARISON OF COMPUTATION AND EXERIM4ENT

H 5
Free flight at 15,000 a

C'/Co Re- 10,000

-local skin-friction coefficient,

Ki.ruin-Schftherr,
.8incompressible -2.634 10I Van Driest 11 applied to KL-ain-Sch~hiherr Eq.

=.2 .3. . .

.47



.101II-

.09

.0

.080

.50 .55 .0 .6.7 .5

Figure 26. Computed effect o+ turbulence-modelI closure
coeftcf n a i~ nmxing layer- spreading
rate.

48



.12

.10

- COM4PUTED

.08 0 M4EASURED

.02

-4.1

0

0 .15 .30 .45 .60 .75

U /1U

Figure 2?. Variation with velocity ratio of' asymptotic spread-E
ing rate for an incompressible mixing layer.

wMEN



y/x

.10
0

- COMPUTED0

0 LIEPMANN-LAUFER

- .05

00

-.05
0 R

0

-.10 0

-.15

0

-.20

0 .2 . .6 .8 1.0

u/u1

mr Figure 28. Comparison of computed and measured velocity
profiles for an incompressible mixing layer.

50



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

C\22

--- i M - -o

- "-2 ,

K51

1-= 0C .-

.V.

I ., 0 0 0 0O

Figure 29. Development of an incompressible mixing layer.



THE 1980-81 APOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT PLOWS:I COMPARISON OF COMPUTATION AND EXPERIMENT

'1 0

I-O

coo

00
0-

00

U52



THE 1980-81 APOSR-HTTM-STANPORD CONFERENCE ON COMPLEX TURBULENT FLOWS:I COMPARISON OF COMPUTATION AND EXPERIMENT

C\2 "

0 60

Figre31 Icoprssbl bunarylaerwih nior bowng

53I



° : - ---- -

°I THE 1980-81 AFOSR-HTTM-STANFORW CONFERENCE ON COM~PLEX TURBULENT FLOWS:-COMPARISON OF COMPUTATION AND EXPERIMENT

I -N

- I

CC\2

C\2

C\2

C\2

00

o 0
OF 00

F'igure 32. Incompressible boundary layer with uniform blowing.

- ----- -_ -_ =- - _ . . .. .. .. - - - _- __ . - - ....4



THE 1980-81 AIOSR-RTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

112

C\2

00

00

Iiur 33. Incompressible boundary layer with uniform blowing.

55 4



TH 98-1APOSR-HT7M-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:3

TEE 180-81 COMPARISON OF COMPUTATION AND EXPERIMENT I
004

C-L

*f4$9

U U

C)E

Figur 34 Inopesbebudr ae ihuiomboig

56E



I THE 1980-81 APOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

II
CQ 0

0

O 0

(6C56-n

Fiur -5 Icoprsibe oudrylaerwthsutin

570



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT PLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

r U
I I " " " I

0I

011
0I

CQQ

0

= U

F 3 Ino rs bI bw

581
LO 0o U

5 "° Figure 36. incompressible boundary layer with suction.



f THE 1980-81 AFOSR-HTTH-STANYORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

-: 1
3' •C\2, = ' , • i •"1 . .

0

C/T -U l -1

00

or 0o 0

000

Figure 37. Incompressible boundary layer with suction.

______59



,WOD OWRIV1L o iiROT

-,980-81.~ Aj stA~~' OF coe>A

- M IL

CQA
U)o

%1

%So.

~ure B. 1 ~OvpreSsibl 
boUnl.~La



THE 1980-81 AFOSR-*ITfl-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AN4D EXPERIMENT

.1 .

0 q

C\2

_ _ _ _ _ _ _ _ _ _ _ _ _

CIC)

Figre39 Inomresibe oudar lyes wthunfor scton



f THE 1980-81 AFOSR-BTTm4-SANFORD CONFERENCE ON CONpLEx TURBULENT FLOWS:
U COMPARISON OF COMPUTATION AND EXPERIMENT

I:)
LL-

.I. . .....

0D

E-1-

- 91

Figure iQ ncomressible boundary layers with unifform suction.

6d



THE 1980-81 AFOSR-HT (-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
3 COMPARISON OF COMPUTATION AND EXPERIMENT

T7

coL

C'Q"

CC

CD?

- 0 0 0
U- 0

0 6 0

Fiu U.. inopesil bondr laes0 nfr S Crl

C464



THE 1980-81 AFOSR-HTTI4-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
* COMPARISON OF COMPUTATION AND EXPERIMENT

I I 7

0~0

U-)

C\2Q

o 6o

0U)

00

00

coo

Figure 42. Incompressible boundary layers with uniform Suction.



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:jCOMPARISON OF COMPUTATION AND EXPERIMENT

- 11

_0

SE- r x0

0 0

0

E- 0

I C\2S0 0D 0 0

0 0 0 0

Figure 43. Incompressible boundary layer with adverse pressure gradient.I 65



TE18-81 APQSR-HTTM-STANPORD CONFERENCE ON COMPLEX TURBULENT FLO:
COMPARISON OF COMPUTATION AND EXPERIMENT

~000

0'

C\2 0

- 0

0

- 0i0

C? C

004

0

00
0

IL0 0
Figure 414. Incompressible boundary layer with adverse pressure gradient.

66



77I
THE 1980-81 AFOSR-HTni-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

CO1MPARISON OF COMPUTATION AND EXPERIMENT

00
0~00

00

-4v-4

0 C\20
000

00
II0

00

= 00

C~4

It

Fgur 05 I

Figre 5.Incompressible boundary layer with adverse pressure gradient.

67



THE 1.980-81 APOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIM~ENT

jo 0
U?2 0

0I

00

o 00

0_

o 0 0
'In 000_

6 6 6 6 6

Fip-ure 4i6. incompressible boundary layer with adverse pressure gradient.

68



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

= 00-fD

!oz 0.

00 0 1>
--

LO C\2-*00

Ci)

-~ , , I

- I-.

Q 00IV0
F 1M

CC

Figure 47. Mach 2.2 boundary layers with adverse pressure gradient.

69

77/



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:j COMPARISON OF COMPUTATION AND EXPERI1ENT

IX.- 0 0 c

Q00

tto
0 ~

00

0 L

Co2 0 0

vi 01

0I

0 tO 0 >I0:6 6 x
Fiur 48 Mc 22bondr lyrswihadereprsur gaiet

22ZI=L - _ - _ _



--- --- -
11MI 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMARISON OF COMPUTATION AND EXPERIMENT

E

- U1

a 4,

00J0
- CO

0

(>0D

00

C5 26

oiur 49 ah22bunaylyr it des rssr rdet

71a



THE 1980-81 AVFOSR-HTTH4-STANFORD CONFERNCE ON COMPLEX TURBULENT FLOWS:I - COMPARISON OF COMPUTATION AND EXPERIME"NT

00

-
L

- f) C\

Fiur R1.Mc . 0onaylyrwihavrepesr rdet

726



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS: -

COMPARISON OF COMPUTATION AND EXPERIMENT

ce- 0

0

o0

:00

o6

0I
0

-- 0

LO

0 .T-4
x6

.Am

r-Figure 51. Mach 2.2 boundary layer with adverse pressure gradient.

FE73

Li0



H1980-81 AFOSR-HTTM1-STANPORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT _

CY) C
C\2_

U)

co

0

V 0

coo

?igre 2. ach2.2boudar laer ithaE se rsuegad nt

714



77I
TE1980-81 AFOSR-HTTM4-STAKFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:I

COMPARISON OF COMPUTATION AND EXPERIM~ENT

CYA C

00

Co)

Co

0 0

00

00liz 0 000
0 0

Fiue50Mc . onaylyr ihavrepesr rdet

750

- -- - ~ ~ - -



J J~E 1980-81 APOSR-ITHM-STANFORD CONFERENICE Oil COM1PLEX TURBULMN FLOWS:
I-' COIIPAISON OF COMPUTATION AND EXPERIMENT

ti-c
0~04 E0

UN'

ON 0
C)0

00

I 0

00

0

~iur 04 ah22budr ae ihavrepesr rdet

--
) 

-r*r 
0

0 - - -
-



= I~HE1980-81 AFOSR-HIM -STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
= F1 COMPARISON OF COMPUTlATION AND EXPERL'ILNT

co I

o 00

co2
CC)

0

cy)

It 0

= =F~gure 55. Mah2.2 boudaryaer wit' _den _rSue _ ____ _ -'



j THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT

0 II 0

000

co'

4m 1
00

003

I CQ 0

X *0 0

Figure 56. Mach 2.2 boundary layer with adverse pressure gradient.

78



0It
THE 1.980-81 AFOSR-iiTT-STANYORD CONFERENCE ON COMF-2X TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPE ....ANT

CII
00 0 0 ^

00

00

00

00

00

0*0

790

E-1~



@F77-,

-- THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMIPARISON OF COMPUTATION AND EXPERIMENT

Mi

6 €
cu--

0j

co

-. I2

00

00
00

E- INI

o LCo 2

0

Figure 58. Mach 4I boundary layer with adverse pressure gradient.
-- 4"n'* 80

... - --i :



if THE 1980-81 APOSR-RTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COM4PUTATION AND EXPERIMENT

C\2

co U0

811



THE 1980-81 APOSR-HTAhI-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS: v

COMPARISON OF COMPUTATION AND EPERIMENT

01

C\2 1=

H0

-4

Figure 60. Mach 4 boundary layer with adverse pressure gradient, -



IZ

I THE 1980-81 AFOSR-HTTH-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT

(.0

00

U):

00 0

0oC-

IL II

00

0 0

Ka Figure 61. Mach 14 boundary layer with adverse pressure gradient.

I 8 3
Li = _ ___ - -= _



THE 1980-81 AORHT-ANRDCONFERENCE ON COMPLEX TURBULET FLOWS:
COMPRISN O COMUTAIONAND EXPERIM1ENT

V-4

CI))

0

0

o o 0

ot4 0
00

Figure 62. Transonic airfoil RAE 2822.

EE 8



THE 1980-81 AFOSR-HTTH-STANFORD CONFERENCE ON COMPLEX TURBULET FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENIT

2EN--

00 9Eei

v-4-

_ _ _ __ _ _ _ 0

00

0 -. j

- C\2

Figure 63. Transonic airf~oil RAE 2822.

85



THE 1980-81 AEOSR-Urn-STANFORD CONFERENCE ON COMPLMX TURBULENT FLOWS

3 COMPARISON OF COMPUTATION AND M[PER114ENT

0 0

00

N 00

k -
~ ~cc2I 

-I11

goo

00

.0 0 0

0 6

Figure 614. Transoni~c airf'oil RAE 2822.

86



CASE 1

UPPER SURFACE

14

20

00

0 .2 .. 6.8 1.0

X/c

10 af.

LOWER SURFACE

'40

2

00

0 .2*4 .. 8 1.0

X/c

Figure 65. Air-foil1 DSMA 523s; Mach .6; Re. 4 million. M

87



C ASE 2
l 3 c

'1 ~ 6
UPPER SURFACE

2

00

0 .2 .4.6 . 1.0

'c/c

103 cf

LOWER SURFACE

2

01

0 .2 *4.6 .8 1.0

'c/c

Fxgure 66. Airfoil DSMA 523s; Mach .8; Re =2ilin

iEL
88



iI

So10 3c  CASE 3

1 6

UPPER SURFACE

2

00
_0 

0

0 .2 .4 .6 .8 1.0

3 

X/c

10 C/

6

LOWER SURFACE

0 

0

2

0 

0_

.2 .4 .6 .8 1.0

x/c

Figure 67. Airfoil DSMA 523s; Mach .8; 
Re = 3 million. 

Ma

I CI9



THE 1980-81 APOSR-HTTH-STANFORD CONFERENCE ON COMPLEX TURULENT FLOWS.f COMPARISON OF COMIPUTATION AND EXPERIMENT

N

L

rn

V~

Fiur 6. iroi ISN- 5q--,Cae1;Upersuf-e

C,> I I0



F7--'
THE 1980-81 hFOSR-UTTN-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERLHENTU

mU

I -

a - - -1= ~ Co
C\

LA

piw 69 C.01DSA527;l~-e1 f.oerSrae



Tin

THE 1.980-81 AFOSR-HTTF"STANFORD CONFERENCE ON COMPLEX TUR.BULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

L In

C\.2

C\2
r -

~K~rn

C\2

coo

CC\2

Fiue7. ArolDM 23;Cs ;Uprsrae

92-



f ~THE 19 80-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:__
COMPARISON OF COMPUTATION AND EXPERIMENT

Li

_ _ _ _ _ __o_ _ _ _ _QD'<
vtrU

II

I _

I -

to_

0-am

-1

Figure 71. Airfoil DSMA 523s; Case 2; Lower surface.

93



THE 1.980-81 AFOSR-HTTM-STANPORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

00

*1 4

C\20 0

1<6o

Figure 72. Airfoil DSMA 523s; Case 3-; Upper surface.

94



THE 1980-81 AFOSR-1HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

____0I

N10 0I
6N 4 e-m

WI

LA~

CI> LC

95'



THE 1980-8 1 AEOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS: I 4
COMPARISON OF COMPUTATION AND EXPERIMENT

C\2o

Ir4 rk-1

4,-

*0

00

0 4' O

00

400
000

0 00

Figur 74.Diffuser flow with low-core turbulence.

96



THE 1980-81 AFOSR-HTTH-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
T COMPARISON OF COMPUTATION AND EXPERIMENT

C\2

C\2

-~-00
0*I

C~

oQ C

Figure 75. Diffuser flow with low-core turbulence.

97



THE 1980-81 AFOSR-HITT1-STANFORD) CONFERENCE ON COMPLEX TURBULENT FLOWS:
J COMPARISON OF COMIPUTATION AND EXPERIMENT

0 0O000

,0

CD 0

C\ 0

C, ;

_ II 0

co- 0

0

Ln C
QC

~~~~C C II ! III r

540
5-4

Fiu7 6 6ifsrfo ihlwcr ublne
* II 08



r-7
FRZ~i- -THE 1980-81 AFOSR-ITTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT

I0

0 0

coo

It.

co~

0

0

C0 0 0 0 C0
0 0 C 0 0_

C)-

Figure 7?.- Difftuser flow with high-core turbulence.

99



THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:I

j COMPARISON OF COMPUTATION AND EXPERIMENTI

00

00
144

CIDI

In-

1000



THE 1980-81 APOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

0'

-1

00

j~ r dri
C

04

10_

0
_

0 Co u-

V igure 79. Diffuser flow with high-core turbulence.

101.



THE 1980-81 AFOSR-RHfl-SANPORD CONFERENCE ON COMPLEX TURBULENT FLOWS:I COMPARISON OF COMPUTATION AND EXPERIMENT

0

CQC\2

- 0*

00 *
00

00
co 000

0 . 00
0 0

00

E- 0Q 0

10

L igur _0 lwps akadfcn tp



THE 1980-81 AFOSR-HTT11-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS-~
COMPARISON OF COMPUTATION AND EXPERIMENT

- -
I I

.tG I

C\24J
(12i

04

co

0 -0

4

C) C I . 1

o C0 C

Figure 81. Flow past a backward-racing step.

103



THE 1980-81 AFOSR-HTTM-STANPORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
COMPARISON OF COMPUTATION AND EXPERIMENT

C\2 I Q

C\2

00

00

00

00

C\2

Figure 82. Fl1ow past a-backwardi-facing step.

__ I4



THE 1.980-81 AFOSR-HT'21-STANPoRD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT

C\\2

C\2

oo 0 0

co0

__ 10



I

APPENDIX

WALL FUNCTIONS

The purpose of this Appendix is to provide some insight into

the use of so-called "wall functions" with advanced turbulence

models. In its original form, this Appendix was submi.ted to

the Stanford Olympics C 'mittee as a note and, except for minor

editorial changes needed ,or consitency with this report, is

reproduced in its entirit'.

1. Mathematical Meaning of Matching to the Law of the Wall--

Generally speaking, in order to solve the equations of motion for

a viscous flow over a solid surface one must specify boundary con-

ditions valid at the surface. Often, in turbulent flow computations,

it is convenient to avoid integration through the sublayer. This

-- !can be done by assuming the law of the wall to be valid for the flow

of interest so that we write (for incompressible flow)

U ,: 11 u TY2
u u2 ( og - + B) (Al)

where uT is friction velocity, K is Karman's constant, B-5 for smooth

walls and v is kinematic viscosity. The quantities u2 and Y2 denote

tangential velocity and normal distance from the surface at the first

mesh point adjacent to the surface.

The first point I wish to make is that in a strict mathematical
- sense the boundary condition we are actually using when we invoke

Equation (Al) is:

_ Uk T + B) as y 0 (A2)

SI We are in fact idealizing the flow as having (relative to the over-

all scale of the boundary layer) a zero thickness sublayer.
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V= T

2. The Origin of "Wall Functic.,s"

i When a turbulence model is used which involves additional dif-

__ ferential equations describing evolution of turbulent field pro-

perties, more boundary conditions are needed. For example, using

the Wilcox-Rubesin two-equation model of turbulence we must also

- specify the appropriate "boundary" conditions for the turbulent

=mixing energy, e, and turbulent dissipation rate per unit energy,

W. It is at this point that the concept of so-called "wall functions"

is introduced. These functions generally are deduced by examining

the limiting form of the turbulence-model equations as y 0. The

equations simplify in this limit primarily through dropping of the _

convection terms. For example, in a constant pressure boundary

- layer the Wilcox-Rubesin model equations simplify in this limit

to the following:

edu 2  (A3)
wdy UT

(-) - e d dy - (A4) _

2 2

Y du 2  dZ dy w_

where Z is turbulent length scale defined by Z - e /w and 8, 8*,

- y, a, a* are closure coefficients whose values are __

S8 3/20, * -9/100 )
a 1/2a* --1/2 (A6)

- 10/9 MA

It is easy to show that one solution to Equations (A3-A5), which

- we shall denote as e-e and w = ww" is:

22
e u0// 7 (A7)_

I-_rR ww u K/iY (A8)I
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where K is the Karman constant, a fact which has been arranged by

selecting the closure corfficients to satisfy the condition
2-

Y = 8/8' - 2K /4. Equations (A7 - A8) generally are referred

__to as wall functions. In computations, Equations (A7 - A8) are

used to define e2 and w at Y=Y 2 "

The second point I wish to make is that, as with the law-of-the-

wall velocity boundary condition, the precise mathematical state-

ment of the "wall-function" boundary conditions for e and w is

e ew 1e ewas y 0 (A9)

W 4- 4
3. Non-Uniqueness of Wall Functions

Now, because the equations for e and w are of second order, Equations

(A7 - A8) are not the only solutions of Equations (A3-A5). In

fact, by changing independent variables from y to u one can show

immediately that the e equation simplifies to

2 1
* - 8* E2  1Ab)

2
where E = e/u and U = u/u . As above, one solution has dE/dU = 0 1
so that E = I//. There are also solutions having dE/dU # 0 which

can be obtained by multiplying both sides of Equation (A10) by

dE/dU and integrating twice to obtain
E

U U 4j dE (All)

where A is an integration constant and E0 , U0 denote reference values

of E, U. Equation (All) is an elliptic integral whose properties

vary widely with the value of the integration constant A. It is

not my purpose here to examine in detail the behavior of E contained

in Equation(All). Rather, I wish only to emphasize that more than

one solution to the model equations exists and that, without care-

ful analysis, we cannot be sure that all solutions necessarily
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are consistent with the law of the wall.

Based on this observation, the third point I wish-to make is that

arbitrarily deviating from Equations (A7-A9) by using some value -
other than 8* and/or K may introduce unexpected surprises, many

of which may be hiding in the integrand of Equation (All). In

essence, in selecting the "wall functions" defined in Equations

(A7 - A8) we are (a) demanding that our boundary conditions be

= °consistent with the differential equations and (b) excluding any

other asymptotic (as y - 0) behavior which might be inconsistent

with the law of the wall.

4. Effects of Pressure Gradient

All of the analysis above assumes constant pressure. As will be

shown in this section, Equations (A7 - A8) are inappropriate

unless boundary conditions are applied much closer to the surface

than is done in common practice. To see this, note that now

Equation (A3) must be replaced by

e du 2 1 dp (A12)
d u + dx A

where p is density and dp/dx is pressure gradient. Equations (AU
+and(A5) remain as before. Letting y - u y/v we can rewrite

Equation (A12) as

edu.= 2 ( vdp/dx +(A3)w dy uT PU3

Order of magnitude estimates for typical attached boundary-layer

flows in pressure gradient indicate the dimensionless grouping
M , multiplying y+ is a small parameter. This suggests seeking a

solution of the form 2I e=-~( l 1 + ...*" ,1 )e- 
1i

SUT

du !i (+ u )
dy Ky 1

109



where, for simplicity, we have defined our small parameter *
as follows:

vdp/dx A
3 (A15)PUS .

For the sake of brevity, I omit details of the algebra and simply
state the final solution up to terms linear in *, viz,

e _36 +
1 ~Y

28 + (A16)

i :-:- - 1 y

U 33 +

U1  31)

Consequently, for flows in adverse pressure gradient Equation (A2)

must be replaced by

uuI + B 3l1 uY) as ylog0 (Al7)u T (K lo 31 + - c v "

while, to this order of approximation, the wall functions ew and

w defined in Equations (A? - A8) must be replaced by

2

Sew- + 3 6 uY (A18)

uT 28 uTY(A9
" 'w- 3-1-f V

w~ I (A19)

To show the importance of the order * corrections in the wall
functions, FigureAl shows results of a computation with the Wilcox-

Rubesin model in which the order * corrections were omitted. The

flow considered was the Bradshaw "Flow C" adverse pressure gradient

boundary layer 7 . In the computation "surface" boundary conditions

were Applied at values of y ranging between 12 and 20. The figure

compares computed turbulent mixing energy at x = 7 feet with

Equation (A18). At this position the value of y+ for the mesh point
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nearest the surface is 12. As shown, the numerical solution

rapidly approaches the analytical solution given by Equation (A18)

and the two solutions differ by less than 2% above y = 30.

In a subsequent solution in which order * corrections to the law

of the wall and the wall functions were included, the numerical

and analytical solutions are virtually identical up to about y =70

beyond which point terms of order 2 presumably become important.

Skin friction for these two numerical computations changed by less

than 2% indicating the neglect of the order * corrections was not
terribly important in this particular computation. However, please

+note that in applying the boundary conditions at y = 12 our error

in e was only 4%. Had we applied the boundary condition at a

value of y = 40 (which is typical for those who use wall functions

in their work), the error in e increases to 14% which could very

easily result in a skin friction error of 5% or more. Indeed,

I did some numerical experimentation years ago and found that cf

would change substantially with the point of application of the

boundary conditions when the order * corrections are omitted. The

fourth point I wish to make is that, by contrast, solutions are

virtually independent of this point of application when the order

- corrections are included.

5. Other Effects

Similar perturbation analyses can be used to determine near-wall

behavior of an advanced turbulence model including effects such
3as compressibility and surface mass transfer In my work I

generally integrate through the sublayer so I have found no need
to derive any but the leading order solutions. I have made such

derivations only to investigate limiting behavior of the model in

order to check for consistency with physical reality. Hence, my

Past work offers no further assistance to those wishing to use
wall functions. However, the procedure is no more complicated

than outlined above and also in Reference 3.
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6. Summary

In conclusion I would like to summarize the points made above and

add one further comment. The key points I am making are:

1. In matching to the law of the wall we are, in a

strict mathematical sense, insisting upon specified

asymptotic behavior of the velocity/surface-stress

relationship in the limit y/6 0 0, where 6 is a length

characteristic of overall scale of the boundary layer;

2. In using "wall functions" we are likewise insisting

upon specified asymptotic behavior of turbulence-field

properties in the limit y/6 0;

3. Wall functions are not unique. For a given turbulence

model, there generally is more than one asymptotic

solution as y/6 * 0 and only one of these solutions

can usually be said with certainty to be consistent

with the law of the wall;

4. In using wall functions for flows with pressure gradient,

surface mass transfer, etc., solution accuracy can be

impaired if proper account is not taken of these effects

upon the wall functions and upon their point of

application.

If proper account is taken of the points above, it is possible

to eliminate at least one key area of uncertainty in numerical work

and in turbulence-model research in which advanced turbulence models

are used. For example, as noted above, solutions become independent

of the location of the mesh point nearest the surface (provided

y <60 for that point) when Equations (Al7-Al9)are used in place

of Equations(A2) and(A9) for the Bradshaw "Flow C" case. Such an

end, I feel, more than Justifies the effort involved in performing

a straightforward perturbation analysis of the asymptotic behavior

of a given turbulence model. This behavior is, of course, unique
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to each model; Equations (A16), for example, are valid only for

S] the Wilcox-Rubesin model. The behavior peculiar to any other

model nevertheless can be determined once and for all using the

same kind of perturbation analysis. The modest effort involved

should greatly reduce uncertainty about numerical precedures

employed by those who make use of wall functions.
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